Paper ID: 2210.16023
LegoNet: A Fast and Exact Unlearning Architecture
Sihao Yu, Fei Sun, Jiafeng Guo, Ruqing Zhang, Xueqi Cheng
Machine unlearning aims to erase the impact of specific training samples upon deleted requests from a trained model. Re-training the model on the retained data after deletion is an effective but not efficient way due to the huge number of model parameters and re-training samples. To speed up, a natural way is to reduce such parameters and samples. However, such a strategy typically leads to a loss in model performance, which poses the challenge that increasing the unlearning efficiency while maintaining acceptable performance. In this paper, we present a novel network, namely \textit{LegoNet}, which adopts the framework of ``fixed encoder + multiple adapters''. We fix the encoder~(\ie the backbone for representation learning) of LegoNet to reduce the parameters that need to be re-trained during unlearning. Since the encoder occupies a major part of the model parameters, the unlearning efficiency is significantly improved. However, fixing the encoder empirically leads to a significant performance drop. To compensate for the performance loss, we adopt the ensemble of multiple adapters, which are independent sub-models adopted to infer the prediction by the encoding~(\ie the output of the encoder). Furthermore, we design an activation mechanism for the adapters to further trade off unlearning efficiency against model performance. This mechanism guarantees that each sample can only impact very few adapters, so during unlearning, parameters and samples that need to be re-trained are both reduced. The empirical experiments verify that LegoNet accomplishes fast and exact unlearning while maintaining acceptable performance, synthetically outperforming unlearning baselines.
Submitted: Oct 28, 2022