Paper ID: 2210.17071
Computing Rule-Based Explanations by Leveraging Counterfactuals
Zixuan Geng, Maximilian Schleich, Dan Suciu
Sophisticated machine models are increasingly used for high-stakes decisions in everyday life. There is an urgent need to develop effective explanation techniques for such automated decisions. Rule-Based Explanations have been proposed for high-stake decisions like loan applications, because they increase the users' trust in the decision. However, rule-based explanations are very inefficient to compute, and existing systems sacrifice their quality in order to achieve reasonable performance. We propose a novel approach to compute rule-based explanations, by using a different type of explanation, Counterfactual Explanations, for which several efficient systems have already been developed. We prove a Duality Theorem, showing that rule-based and counterfactual-based explanations are dual to each other, then use this observation to develop an efficient algorithm for computing rule-based explanations, which uses the counterfactual-based explanation as an oracle. We conduct extensive experiments showing that our system computes rule-based explanations of higher quality, and with the same or better performance, than two previous systems, MinSetCover and Anchor.
Submitted: Oct 31, 2022