Paper ID: 2211.00129
Is Facial Recognition Biased at Near-Infrared Spectrum As Well?
Anoop Krishnan, Brian Neas, Ajita Rattani
Published academic research and media articles suggest face recognition is biased across demographics. Specifically, unequal performance is obtained for women, dark-skinned people, and older adults. However, these published studies have examined the bias of facial recognition in the visible spectrum (VIS). Factors such as facial makeup, facial hair, skin color, and illumination variation have been attributed to the bias of this technology at the VIS. The near-infrared (NIR) spectrum offers an advantage over the VIS in terms of robustness to factors such as illumination changes, facial makeup, and skin color. Therefore, it is worthwhile to investigate the bias of facial recognition at the near-infrared spectrum (NIR). This first study investigates the bias of the face recognition systems at the NIR spectrum. To this aim, two popular NIR facial image datasets namely, CASIA-Face-Africa and Notre-Dame-NIVL consisting of African and Caucasian subjects, respectively, are used to investigate the bias of facial recognition technology across gender and race. Interestingly, experimental results suggest equitable face recognition performance across gender and race at the NIR spectrum.
Submitted: Oct 31, 2022