Paper ID: 2211.01957
Sub-network Multi-objective Evolutionary Algorithm for Filter Pruning
Xuhua Li, Weize Sun, Lei Huang, Shaowu Chen
Filter pruning is a common method to achieve model compression and acceleration in deep neural networks (DNNs).Some research regarded filter pruning as a combinatorial optimization problem and thus used evolutionary algorithms (EA) to prune filters of DNNs. However, it is difficult to find a satisfactory compromise solution in a reasonable time due to the complexity of solution space searching. To solve this problem, we first formulate a multi-objective optimization problem based on a sub-network of the full model and propose a Sub-network Multiobjective Evolutionary Algorithm (SMOEA) for filter pruning. By progressively pruning the convolutional layers in groups, SMOEA can obtain a lightweight pruned result with better performance.Experiments on VGG-14 model for CIFAR-10 verify the effectiveness of the proposed SMOEA. Specifically, the accuracy of the pruned model with 16.56% parameters decreases by 0.28% only, which is better than the widely used popular filter pruning criteria.
Submitted: Oct 22, 2022