Paper ID: 2211.02177
MUSTACHE: Multi-Step-Ahead Predictions for Cache Eviction
Gabriele Tolomei, Lorenzo Takanen, Fabio Pinelli
In this work, we propose MUSTACHE, a new page cache replacement algorithm whose logic is learned from observed memory access requests rather than fixed like existing policies. We formulate the page request prediction problem as a categorical time series forecasting task. Then, our method queries the learned page request forecaster to obtain the next $k$ predicted page memory references to better approximate the optimal B\'el\'ady's replacement algorithm. We implement several forecasting techniques using advanced deep learning architectures and integrate the best-performing one into an existing open-source cache simulator. Experiments run on benchmark datasets show that MUSTACHE outperforms the best page replacement heuristic (i.e., exact LRU), improving the cache hit ratio by 1.9% and reducing the number of reads/writes required to handle cache misses by 18.4% and 10.3%.
Submitted: Nov 3, 2022