Paper ID: 2211.03434

Complete Cross-triplet Loss in Label Space for Audio-visual Cross-modal Retrieval

Donghuo Zeng, Yanan Wang, Jianming Wu, Kazushi Ikeda

The heterogeneity gap problem is the main challenge in cross-modal retrieval. Because cross-modal data (e.g. audiovisual) have different distributions and representations that cannot be directly compared. To bridge the gap between audiovisual modalities, we learn a common subspace for them by utilizing the intrinsic correlation in the natural synchronization of audio-visual data with the aid of annotated labels. TNN-CCCA is the best audio-visual cross-modal retrieval (AV-CMR) model so far, but the model training is sensitive to hard negative samples when learning common subspace by applying triplet loss to predict the relative distance between inputs. In this paper, to reduce the interference of hard negative samples in representation learning, we propose a new AV-CMR model to optimize semantic features by directly predicting labels and then measuring the intrinsic correlation between audio-visual data using complete cross-triple loss. In particular, our model projects audio-visual features into label space by minimizing the distance between predicted label features after feature projection and ground label representations. Moreover, we adopt complete cross-triplet loss to optimize the predicted label features by leveraging the relationship between all possible similarity and dissimilarity semantic information across modalities. The extensive experimental results on two audio-visual double-checked datasets have shown an improvement of approximately 2.1% in terms of average MAP over the current state-of-the-art method TNN-CCCA for the AV-CMR task, which indicates the effectiveness of our proposed model.

Submitted: Nov 7, 2022