Paper ID: 2211.04310

Safety-Critical Ergodic Exploration in Cluttered Environments via Control Barrier Functions

Cameron Lerch, Dayi Dong, Ian Abraham

In this paper, we address the problem of safe trajectory planning for autonomous search and exploration in constrained, cluttered environments. Guaranteeing safe (collision-free) trajectories is a challenging problem that has garnered significant due to its importance in the successful utilization of robots in search and exploration tasks. This work contributes a method that generates guaranteed safety-critical search trajectories in a cluttered environment. Our approach integrates safety-critical constraints using discrete control barrier functions (DCBFs) with ergodic trajectory optimization to enable safe exploration. Ergodic trajectory optimization plans continuous exploratory trajectories that guarantee complete coverage of a space. We demonstrate through simulated and experimental results on a drone that our approach is able to generate trajectories that enable safe and effective exploration. Furthermore, we show the efficacy of our approach for safe exploration using real-world single- and multi- drone platforms.

Submitted: Nov 8, 2022