Paper ID: 2211.04700
NoiSER: Noise is All You Need for Low-Light Image Enhancement
Zhao Zhang, Suiyi Zhao, Xiaojie Jin, Mingliang Xu, Yi Yang, Shuicheng Yan
In this paper, we present an embarrassingly simple yet effective solution to a seemingly impossible mission, low-light image enhancement (LLIE) without access to any task-related data. The proposed solution, Noise SElf-Regression (NoiSER), simply learns a convolutional neural network equipped with a instance-normalization layer by taking a random noise image, $\mathcal{N}(0,\sigma^2)$ for each pixel, as both input and output for each training pair, and then the low-light image is fed to the learned network for predicting the normal-light image. Technically, an intuitive explanation for its effectiveness is as follows: 1) the self-regression reconstructs the contrast between adjacent pixels of the input image, 2) the instance-normalization layers may naturally remediate the overall magnitude/lighting of the input image, and 3) the $\mathcal{N}(0,\sigma^2)$ assumption for each pixel enforces the output image to follow the well-known gray-world hypothesis \cite{Gary-world_Hypothesis} when the image size is big enough, namely, the averages of three RGB components of an image converge to the same value. Compared to existing SOTA LLIE methods with access to different task-related data, NoiSER is surprisingly highly competitive in enhancement quality, yet with a much smaller model size, and much lower training and inference cost. With only $\sim$ 1K parameters, NoiSER realizes about 1 minute for training and 1.2 ms for inference with 600x400 resolution on RTX 2080 Ti. As a bonus, NoiSER possesses automated over-exposure suppression ability and shows excellent performance on over-exposed photos.
Submitted: Nov 9, 2022