Paper ID: 2211.04759
Nested Named Entity Recognition from Medical Texts: An Adaptive Shared Network Architecture with Attentive CRF
Junzhe Jiang, Mingyue Cheng, Qi Liu, Zhi Li, Enhong Chen
Recognizing useful named entities plays a vital role in medical information processing, which helps drive the development of medical area research. Deep learning methods have achieved good results in medical named entity recognition (NER). However, we find that existing methods face great challenges when dealing with the nested named entities. In this work, we propose a novel method, referred to as ASAC, to solve the dilemma caused by the nested phenomenon, in which the core idea is to model the dependency between different categories of entity recognition. The proposed method contains two key modules: the adaptive shared (AS) part and the attentive conditional random field (ACRF) module. The former part automatically assigns adaptive weights across each task to achieve optimal recognition accuracy in the multi-layer network. The latter module employs the attention operation to model the dependency between different entities. In this way, our model could learn better entity representations by capturing the implicit distinctions and relationships between different categories of entities. Extensive experiments on public datasets verify the effectiveness of our method. Besides, we also perform ablation analyses to deeply understand our methods.
Submitted: Nov 9, 2022