Paper ID: 2211.05363

EmoFake: An Initial Dataset for Emotion Fake Audio Detection

Yan Zhao, Jiangyan Yi, Jianhua Tao, Chenglong Wang, Xiaohui Zhang, Yongfeng Dong

Many datasets have been designed to further the development of fake audio detection, such as datasets of the ASVspoof and ADD challenges. However, these datasets do not consider a situation that the emotion of the audio has been changed from one to another, while other information (e.g. speaker identity and content) remains the same. Changing the emotion of an audio can lead to semantic changes. Speech with tampered semantics may pose threats to people's lives. Therefore, this paper reports our progress in developing such an emotion fake audio detection dataset involving changing emotion state of the origin audio named EmoFake. The fake audio in EmoFake is generated by open source emotion voice conversion models. Furthermore, we proposed a method named Graph Attention networks using Deep Emotion embedding (GADE) for the detection of emotion fake audio. Some benchmark experiments are conducted on this dataset. The results show that our designed dataset poses a challenge to the fake audio detection model trained with the LA dataset of ASVspoof 2019. The proposed GADE shows good performance in the face of emotion fake audio.

Submitted: Nov 10, 2022