Paper ID: 2211.05793

Efficient and quantum-adaptive machine learning with fermion neural networks

Pei-Lin Zheng, Jia-Bao Wang, Yi Zhang

Classical artificial neural networks have witnessed widespread successes in machine-learning applications. Here, we propose fermion neural networks (FNNs) whose physical properties, such as local density of states or conditional conductance, serve as outputs, once the inputs are incorporated as an initial layer. Comparable to back-propagation, we establish an efficient optimization, which entitles FNNs to competitive performance on challenging machine-learning benchmarks. FNNs also directly apply to quantum systems, including hard ones with interactions, and offer in-situ analysis without preprocessing or presumption. Following machine learning, FNNs precisely determine topological phases and emergent charge orders. Their quantum nature also brings various advantages: quantum correlation entitles more general network connectivity and insight into the vanishing gradient problem, quantum entanglement opens up novel avenues for interpretable machine learning, etc.

Submitted: Nov 10, 2022