Paper ID: 2211.06360

Rethinking Log Odds: Linear Probability Modelling and Expert Advice in Interpretable Machine Learning

Danial Dervovic, Nicolas Marchesotti, Freddy Lecue, Daniele Magazzeni

We introduce a family of interpretable machine learning models, with two broad additions: Linearised Additive Models (LAMs) which replace the ubiquitous logistic link function in General Additive Models (GAMs); and SubscaleHedge, an expert advice algorithm for combining base models trained on subsets of features called subscales. LAMs can augment any additive binary classification model equipped with a sigmoid link function. Moreover, they afford direct global and local attributions of additive components to the model output in probability space. We argue that LAMs and SubscaleHedge improve the interpretability of their base algorithms. Using rigorous null-hypothesis significance testing on a broad suite of financial modelling data, we show that our algorithms do not suffer from large performance penalties in terms of ROC-AUC and calibration.

Submitted: Nov 11, 2022