Paper ID: 2211.06643
Kinematics Transformer: Solving The Inverse Modeling Problem of Soft Robots using Transformers
Abdelrahman Alkhodary, Berke Gur
Soft robotic manipulators provide numerous advantages over conventional rigid manipulators in fragile environments such as the marine environment. However, developing analytic inverse models necessary for shape, motion, and force control of such robots remains a challenging problem. As an alternative to analytic models, numerical models can be learned using powerful machine learned methods. In this paper, the Kinematics Transformer is proposed for developing accurate and precise inverse kinematic models of soft robotic limbs. The proposed method re-casts the inverse kinematics problem as a sequential prediction problem and is based on the transformer architecture. Numerical simulations reveal that the proposed method can effectively be used in controlling a soft limb. Benchmark studies also reveal that the proposed method has better accuracy and precision compared to the baseline feed-forward neural network
Submitted: Nov 12, 2022