Paper ID: 2211.06652

Learning Neuro-symbolic Programs for Language Guided Robot Manipulation

Namasivayam Kalithasan, Himanshu Singh, Vishal Bindal, Arnav Tuli, Vishwajeet Agrawal, Rahul Jain, Parag Singla, Rohan Paul

Given a natural language instruction and an input scene, our goal is to train a model to output a manipulation program that can be executed by the robot. Prior approaches for this task possess one of the following limitations: (i) rely on hand-coded symbols for concepts limiting generalization beyond those seen during training [1] (ii) infer action sequences from instructions but require dense sub-goal supervision [2] or (iii) lack semantics required for deeper object-centric reasoning inherent in interpreting complex instructions [3]. In contrast, our approach can handle linguistic as well as perceptual variations, end-to-end trainable and requires no intermediate supervision. The proposed model uses symbolic reasoning constructs that operate on a latent neural object-centric representation, allowing for deeper reasoning over the input scene. Central to our approach is a modular structure consisting of a hierarchical instruction parser and an action simulator to learn disentangled action representations. Our experiments on a simulated environment with a 7-DOF manipulator, consisting of instructions with varying number of steps and scenes with different number of objects, demonstrate that our model is robust to such variations and significantly outperforms baselines, particularly in the generalization settings. The code, dataset and experiment videos are available at https://nsrmp.github.io

Submitted: Nov 12, 2022