Paper ID: 2211.07465

Findings of the Covid-19 MLIA Machine Translation Task

Francisco Casacuberta, Alexandru Ceausu, Khalid Choukri, Miltos Deligiannis, Miguel Domingo, Mercedes García-Martínez, Manuel Herranz, Guillaume Jacquet, Vassilis Papavassiliou, Stelios Piperidis, Prokopis Prokopidis, Dimitris Roussis, Marwa Hadj Salah

This work presents the results of the machine translation (MT) task from the Covid-19 MLIA @ Eval initiative, a community effort to improve the generation of MT systems focused on the current Covid-19 crisis. Nine teams took part in this event, which was divided in two rounds and involved seven different language pairs. Two different scenarios were considered: one in which only the provided data was allowed, and a second one in which the use of external resources was allowed. Overall, best approaches were based on multilingual models and transfer learning, with an emphasis on the importance of applying a cleaning process to the training data.

Submitted: Nov 14, 2022