Paper ID: 2211.07713

How Long Is Enough? Exploring the Optimal Intervals of Long-Range Clinical Note Language Modeling

Samuel Cahyawijaya, Bryan Wilie, Holy Lovenia, Huan Zhong, MingQian Zhong, Yuk-Yu Nancy Ip, Pascale Fung

Large pre-trained language models (LMs) have been widely adopted in biomedical and clinical domains, introducing many powerful LMs such as bio-lm and BioELECTRA. However, the applicability of these methods to real clinical use cases is hindered, due to the limitation of pre-trained LMs in processing long textual data with thousands of words, which is a common length for a clinical note. In this work, we explore long-range adaptation from such LMs with Longformer, allowing the LMs to capture longer clinical notes context. We conduct experiments on three n2c2 challenges datasets and a longitudinal clinical dataset from Hong Kong Hospital Authority electronic health record (EHR) system to show the effectiveness and generalizability of this concept, achieving 10\% F1-score improvement. Based on our experiments, we conclude that capturing a longer clinical note interval is beneficial to the model performance, but there are different cut-off intervals to achieve the optimal performance for different target variables. Our code is available at https://github.com/HLTCHKUST/long-biomedical-model.

Submitted: Oct 25, 2022