Paper ID: 2211.08573
Realization of Causal Representation Learning to Adjust Confounding Bias in Latent Space
Jia Li, Xiang Li, Xiaowei Jia, Michael Steinbach, Vipin Kumar
Causal DAGs(Directed Acyclic Graphs) are usually considered in a 2D plane. Edges indicate causal effects' directions and imply their corresponding time-passings. Due to the natural restriction of statistical models, effect estimation is usually approximated by averaging the individuals' correlations, i.e., observational changes over a specific time. However, in the context of Machine Learning on large-scale questions with complex DAGs, such slight biases can snowball to distort global models - More importantly, it has practically impeded the development of AI, for instance, the weak generalizability of causal models. In this paper, we redefine causal DAG as \emph{do-DAG}, in which variables' values are no longer time-stamp-dependent, and timelines can be seen as axes. By geometric explanation of multi-dimensional do-DAG, we identify the \emph{Causal Representation Bias} and its necessary factors, differentiated from common confounding biases. Accordingly, a DL(Deep Learning)-based framework will be proposed as the general solution, along with a realization method and experiments to verify its feasibility.
Submitted: Nov 15, 2022