Paper ID: 2211.10715

Single Stage Multi-Pose Virtual Try-On

Sen He, Yi-Zhe Song, Tao Xiang

Multi-pose virtual try-on (MPVTON) aims to fit a target garment onto a person at a target pose. Compared to traditional virtual try-on (VTON) that fits the garment but keeps the pose unchanged, MPVTON provides a better try-on experience, but is also more challenging due to the dual garment and pose editing objectives. Existing MPVTON methods adopt a pipeline comprising three disjoint modules including a target semantic layout prediction module, a coarse try-on image generator and a refinement try-on image generator. These models are trained separately, leading to sub-optimal model training and unsatisfactory results. In this paper, we propose a novel single stage model for MPVTON. Key to our model is a parallel flow estimation module that predicts the flow fields for both person and garment images conditioned on the target pose. The predicted flows are subsequently used to warp the appearance feature maps of the person and the garment images to construct a style map. The map is then used to modulate the target pose's feature map for target try-on image generation. With the parallel flow estimation design, our model can be trained end-to-end in a single stage and is more computationally efficient, resulting in new SOTA performance on existing MPVTON benchmarks. We further introduce multi-task training and demonstrate that our model can also be applied for traditional VTON and pose transfer tasks and achieve comparable performance to SOTA specialized models on both tasks.

Submitted: Nov 19, 2022