Paper ID: 2211.11257
Computational Imaging for Machine Perception: Transferring Semantic Segmentation beyond Aberrations
Qi Jiang, Hao Shi, Shaohua Gao, Jiaming Zhang, Kailun Yang, Lei Sun, Huajian Ni, Kaiwei Wang
Semantic scene understanding with Minimalist Optical Systems (MOS) in mobile and wearable applications remains a challenge due to the corrupted imaging quality induced by optical aberrations. However, previous works only focus on improving the subjective imaging quality through the Computational Imaging (CI) technique, ignoring the feasibility of advancing semantic segmentation. In this paper, we pioneer the investigation of Semantic Segmentation under Optical Aberrations (SSOA) with MOS. To benchmark SSOA, we construct Virtual Prototype Lens (VPL) groups through optical simulation, generating Cityscapes-ab and KITTI-360-ab datasets under different behaviors and levels of aberrations. We look into SSOA via an unsupervised domain adaptation perspective to address the scarcity of labeled aberration data in real-world scenarios. Further, we propose Computational Imaging Assisted Domain Adaptation (CIADA) to leverage prior knowledge of CI for robust performance in SSOA. Based on our benchmark, we conduct experiments on the robustness of classical segmenters against aberrations. In addition, extensive evaluations of possible solutions to SSOA reveal that CIADA achieves superior performance under all aberration distributions, bridging the gap between computational imaging and downstream applications for MOS. The project page is at https://github.com/zju-jiangqi/CIADA.
Submitted: Nov 21, 2022