Paper ID: 2211.12009
Deep-Learning-Based Computer Vision Approach For The Segmentation Of Ball Deliveries And Tracking In Cricket
Kumail Abbas, Muhammad Saeed, M. Imad Khan, Khandakar Ahmed, Hua Wang
There has been a significant increase in the adoption of technology in cricket recently. This trend has created the problem of duplicate work being done in similar computer vision-based research works. Our research tries to solve one of these problems by segmenting ball deliveries in a cricket broadcast using deep learning models, MobileNet and YOLO, thus enabling researchers to use our work as a dataset for their research. The output from our research can be used by cricket coaches and players to analyze ball deliveries which are played during the match. This paper presents an approach to segment and extract video shots in which only the ball is being delivered. The video shots are a series of continuous frames that make up the whole scene of the video. Object detection models are applied to reach a high level of accuracy in terms of correctly extracting video shots. The proof of concept for building large datasets of video shots for ball deliveries is proposed which paves the way for further processing on those shots for the extraction of semantics. Ball tracking in these video shots is also done using a separate RetinaNet model as a sample of the usefulness of the proposed dataset. The position on the cricket pitch where the ball lands is also extracted by tracking the ball along the y-axis. The video shot is then classified as a full-pitched, good-length or short-pitched delivery.
Submitted: Nov 22, 2022