Paper ID: 2211.12164
OLGA : An Ontology and LSTM-based approach for generating Arithmetic Word Problems (AWPs) of transfer type
Suresh Kumar, P Sreenivasa Kumar
Machine generation of Arithmetic Word Problems (AWPs) is challenging as they express quantities and mathematical relationships and need to be consistent. ML-solvers require a large annotated training set of consistent problems with language variations. Exploiting domain-knowledge is needed for consistency checking whereas LSTM-based approaches are good for producing text with language variations. Combining these we propose a system, OLGA, to generate consistent word problems of TC (Transfer-Case) type, involving object transfers among agents. Though we provide a dataset of consistent 2-agent TC-problems for training, only about 36% of the outputs of an LSTM-based generator are found consistent. We use an extension of TC-Ontology, proposed by us previously, to determine the consistency of problems. Among the remaining 64%, about 40% have minor errors which we repair using the same ontology. To check consistency and for the repair process, we construct an instance-specific representation (ABox) of an auto-generated problem. We use a sentence classifier and BERT models for this task. The training set for these LMs is problem-texts where sentence-parts are annotated with ontology class-names. As three-agent problems are longer, the percentage of consistent problems generated by an LSTM-based approach drops further. Hence, we propose an ontology-based method that extends consistent 2-agent problems into consistent 3-agent problems. Overall, our approach generates a large number of consistent TC-type AWPs involving 2 or 3 agents. As ABox has all the information of a problem, any annotations can also be generated. Adopting the proposed approach to generate other types of AWPs is interesting future work.
Submitted: Nov 22, 2022