Paper ID: 2211.12553

Using conditional variational autoencoders to generate images from atmospheric Cherenkov telescopes

Stanislav Polyakov, Alexander Kryukov, Andrey Demichev, Julia Dubenskaya, Elizaveta Gres, Anna Vlaskina

High-energy particles hitting the upper atmosphere of the Earth produce extensive air showers that can be detected from the ground level using imaging atmospheric Cherenkov telescopes. The images recorded by Cherenkov telescopes can be analyzed to separate gamma-ray events from the background hadron events. Many of the methods of analysis require simulation of massive amounts of events and the corresponding images by the Monte Carlo method. However, Monte Carlo simulation is computationally expensive. The data simulated by the Monte Carlo method can be augmented by images generated using faster machine learning methods such as generative adversarial networks or conditional variational autoencoders. We use a conditional variational autoencoder to generate images of gamma events from a Cherenkov telescope of the TAIGA experiment. The variational autoencoder is trained on a set of Monte Carlo events with the image size, or the sum of the amplitudes of the pixels, used as the conditional parameter. We used the trained variational autoencoder to generate new images with the same distribution of the conditional parameter as the size distribution of the Monte Carlo-simulated images of gamma events. The generated images are similar to the Monte Carlo images: a classifier neural network trained on gamma and proton events assigns them the average gamma score 0.984, with less than 3% of the events being assigned the gamma score below 0.999. At the same time, the sizes of the generated images do not match the conditional parameter used in their generation, with the average error 0.33.

Submitted: Nov 22, 2022