Paper ID: 2211.12778

Monitoring and Improving Personalized Sleep Quality from Long-Term Lifelogs

Wenbin Gan, Minh-Son Dao, Koji Zettsu

Sleep plays a vital role in our physical, cognitive, and psychological well-being. Despite its importance, long-term monitoring of personalized sleep quality (SQ) in real-world contexts is still challenging. Many sleep researches are still developing clinically and far from accessible to the general public. Fortunately, wearables and IoT devices provide the potential to explore the sleep insights from multimodal data, and have been used in some SQ researches. However, most of these studies analyze the sleep related data and present the results in a delayed manner (i.e., today's SQ obtained from last night's data), it is sill difficult for individuals to know how their sleep will be before they go to bed and how they can proactively improve it. To this end, this paper proposes a computational framework to monitor the individual SQ based on both the objective and subjective data from multiple sources, and moves a step further towards providing the personalized feedback to improve the SQ in a data-driven manner. The feedback is implemented by referring the insights from the PMData dataset based on the discovered patterns between life events and different levels of SQ. The deep learning based personal SQ model (PerSQ), using the long-term heterogeneous data and considering the carry-over effect, achieves higher prediction performance compared with baseline models. A case study also shows reasonable results for an individual to monitor and improve the SQ in the future.

Submitted: Nov 23, 2022