Paper ID: 2211.12956

Reinforcement learning for traffic signal control in hybrid action space

Haoqing Luo, sheng jin

The prevailing reinforcement-learning-based traffic signal control methods are typically staging-optimizable or duration-optimizable, depending on the action spaces. In this paper, we propose a novel control architecture, TBO, which is based on hybrid proximal policy optimization. To the best of our knowledge, TBO is the first RL-based algorithm to implement synchronous optimization of the staging and duration. Compared to discrete and continuous action spaces, hybrid action space is a merged search space, in which TBO better implements the trade-off between frequent switching and unsaturated release. Experiments are given to demonstrate that TBO reduces the queue length and delay by 13.78% and 14.08% on average, respectively, compared to the existing baselines. Furthermore, we calculate the Gini coefficients of the right-of-way to indicate TBO does not harm fairness while improving efficiency.

Submitted: Nov 23, 2022