Paper ID: 2211.14307

MAEDAY: MAE for few and zero shot AnomalY-Detection

Eli Schwartz, Assaf Arbelle, Leonid Karlinsky, Sivan Harary, Florian Scheidegger, Sivan Doveh, Raja Giryes

We propose using Masked Auto-Encoder (MAE), a transformer model self-supervisedly trained on image inpainting, for anomaly detection (AD). Assuming anomalous regions are harder to reconstruct compared with normal regions. MAEDAY is the first image-reconstruction-based anomaly detection method that utilizes a pre-trained model, enabling its use for Few-Shot Anomaly Detection (FSAD). We also show the same method works surprisingly well for the novel tasks of Zero-Shot AD (ZSAD) and Zero-Shot Foreign Object Detection (ZSFOD), where no normal samples are available. Code is available at https://github.com/EliSchwartz/MAEDAY .

Submitted: Nov 25, 2022