Paper ID: 2211.14557
CMC v2: Towards More Accurate COVID-19 Detection with Discriminative Video Priors
Junlin Hou, Jilan Xu, Nan Zhang, Yi Wang, Yuejie Zhang, Xiaobo Zhang, Rui Feng
This paper presents our solution for the 2nd COVID-19 Competition, occurring in the framework of the AIMIA Workshop at the European Conference on Computer Vision (ECCV 2022). In our approach, we employ the winning solution last year which uses a strong 3D Contrastive Mixup Classifcation network (CMC v1) as the baseline method, composed of contrastive representation learning and mixup classification. In this paper, we propose CMC v2 by introducing natural video priors to COVID-19 diagnosis. Specifcally, we adapt a pre-trained (on video dataset) video transformer backbone to COVID-19 detection. Moreover, advanced training strategies, including hybrid mixup and cutmix, slicelevel augmentation, and small resolution training are also utilized to boost the robustness and the generalization ability of the model. Among 14 participating teams, CMC v2 ranked 1st in the 2nd COVID-19 Competition with an average Macro F1 Score of 89.11%.
Submitted: Nov 26, 2022