Paper ID: 2211.14731
BALF: Simple and Efficient Blur Aware Local Feature Detector
Zhenjun Zhao, Yu Zhai, Ben M. Chen, Peidong Liu
Local feature detection is a key ingredient of many image processing and computer vision applications, such as visual odometry and localization. Most existing algorithms focus on feature detection from a sharp image. They would thus have degraded performance once the image is blurred, which could happen easily under low-lighting conditions. To address this issue, we propose a simple yet both efficient and effective keypoint detection method that is able to accurately localize the salient keypoints in a blurred image. Our method takes advantages of a novel multi-layer perceptron (MLP) based architecture that significantly improve the detection repeatability for a blurred image. The network is also light-weight and able to run in real-time, which enables its deployment for time-constrained applications. Extensive experimental results demonstrate that our detector is able to improve the detection repeatability with blurred images, while keeping comparable performance as existing state-of-the-art detectors for sharp images.
Submitted: Nov 27, 2022