Paper ID: 2211.14743

Searching for Uncollected Litter with Computer Vision

Julian Hernandez, Dr. Clark Fitzgerald

This study combines photo metadata and computer vision to quantify where uncollected litter is present. Images from the Trash Annotations in Context (TACO) dataset were used to teach an algorithm to detect 10 categories of garbage. Although it worked well with smartphone photos, it struggled when trying to process images from vehicle mounted cameras. However, increasing the variety of perspectives and backgrounds in the dataset will help it improve in unfamiliar situations. These data are plotted onto a map which, as accuracy improves, could be used for measuring waste management strategies and quantifying trends.

Submitted: Nov 27, 2022