Paper ID: 2211.16000

Asymptotic consistency of the WSINDy algorithm in the limit of continuum data

Daniel A. Messenger, David M. Bortz

In this work we study the asymptotic consistency of the weak-form sparse identification of nonlinear dynamics algorithm (WSINDy) in the identification of differential equations from noisy samples of solutions. We prove that the WSINDy estimator is unconditionally asymptotically consistent for a wide class of models which includes the Navier-Stokes equations and the Kuramoto-Sivashinsky equation. We thus provide a mathematically rigorous explanation for the observed robustness to noise of weak-form equation learning. Conversely, we also show that in general the WSINDy estimator is only conditionally asymptotically consistent, yielding discovery of spurious terms with probability one if the noise level is above some critical threshold and the nonlinearities exhibit sufficiently fast growth. We derive explicit bounds on the critical noise threshold in the case of Gaussian white noise and provide an explicit characterization of these spurious terms in the case of trigonometric and/or polynomial model nonlinearities. However, a silver lining to this negative result is that if the data is suitably denoised (a simple moving average filter is sufficient), then we recover unconditional asymptotic consistency on the class of models with locally-Lipschitz nonlinearities. Altogether, our results reveal several important aspects of weak-form equation learning which may be used to improve future algorithms. We demonstrate our results numerically using the Lorenz system, the cubic oscillator, a viscous Burgers growth model, and a Kuramoto-Sivashinsky-type higher-order PDE.

Submitted: Nov 29, 2022