Paper ID: 2211.16301
Challenging the Universal Representation of Deep Models for 3D Point Cloud Registration
David Bojanić, Kristijan Bartol, Josep Forest, Stefan Gumhold, Tomislav Petković, Tomislav Pribanić
Learning universal representations across different applications domain is an open research problem. In fact, finding universal architecture within the same application but across different types of datasets is still unsolved problem too, especially in applications involving processing 3D point clouds. In this work we experimentally test several state-of-the-art learning-based methods for 3D point cloud registration against the proposed non-learning baseline registration method. The proposed method either outperforms or achieves comparable results w.r.t. learning based methods. In addition, we propose a dataset on which learning based methods have a hard time to generalize. Our proposed method and dataset, along with the provided experiments, can be used in further research in studying effective solutions for universal representations. Our source code is available at: github.com/DavidBoja/greedy-grid-search.
Submitted: Nov 29, 2022