Paper ID: 2211.16708
Statistical treatment of convolutional neural network super-resolution of inland surface wind for subgrid-scale variability quantification
Daniel Getter, Julie Bessac, Johann Rudi, Yan Feng
Machine learning models have been employed to perform either physics-free data-driven or hybrid dynamical downscaling of climate data. Most of these implementations operate over relatively small downscaling factors because of the challenge of recovering fine-scale information from coarse data. This limits their compatibility with many global climate model outputs, often available between $\sim$50--100 km resolution, to scales of interest such as cloud resolving or urban scales. This study systematically examines the capability of convolutional neural networks (CNNs) to downscale surface wind speed data over land surface from different coarse resolutions (25 km, 48 km, and 100 km resolution) to 3 km. For each downscaling factor, we consider three CNN configurations that generate super-resolved predictions of fine-scale wind speed, which take between 1 to 3 input fields: coarse wind speed, fine-scale topography, and diurnal cycle. In addition to fine-scale wind speeds, probability density function parameters are generated, through which sample wind speeds can be generated accounting for the intrinsic stochasticity of wind speed. For generalizability assessment, CNN models are tested on regions with different topography and climate that are unseen during training. The evaluation of super-resolved predictions focuses on subgrid-scale variability and the recovery of extremes. Models with coarse wind and fine topography as inputs exhibit the best performance compared with other model configurations, operating across the same downscaling factor. Our diurnal cycle encoding results in lower out-of-sample generalizability compared with other input configurations.
Submitted: Nov 30, 2022