Paper ID: 2212.01638

VLG: General Video Recognition with Web Textual Knowledge

Jintao Lin, Zhaoyang Liu, Wenhai Wang, Wayne Wu, Limin Wang

Video recognition in an open and dynamic world is quite challenging, as we need to handle different settings such as close-set, long-tail, few-shot and open-set. By leveraging semantic knowledge from noisy text descriptions crawled from the Internet, we focus on the general video recognition (GVR) problem of solving different recognition tasks within a unified framework. The core contribution of this paper is twofold. First, we build a comprehensive video recognition benchmark of Kinetics-GVR, including four sub-task datasets to cover the mentioned settings. To facilitate the research of GVR, we propose to utilize external textual knowledge from the Internet and provide multi-source text descriptions for all action classes. Second, inspired by the flexibility of language representation, we present a unified visual-linguistic framework (VLG) to solve the problem of GVR by an effective two-stage training paradigm. Our VLG is first pre-trained on video and language datasets to learn a shared feature space, and then devises a flexible bi-modal attention head to collaborate high-level semantic concepts under different settings. Extensive results show that our VLG obtains the state-of-the-art performance under four settings. The superior performance demonstrates the effectiveness and generalization ability of our proposed framework. We hope our work makes a step towards the general video recognition and could serve as a baseline for future research. The code and models will be available at https://github.com/MCG-NJU/VLG.

Submitted: Dec 3, 2022