Paper ID: 2212.02766

Ref-NPR: Reference-Based Non-Photorealistic Radiance Fields for Controllable Scene Stylization

Yuechen Zhang, Zexin He, Jinbo Xing, Xufeng Yao, Jiaya Jia

Current 3D scene stylization methods transfer textures and colors as styles using arbitrary style references, lacking meaningful semantic correspondences. We introduce Reference-Based Non-Photorealistic Radiance Fields (Ref-NPR) to address this limitation. This controllable method stylizes a 3D scene using radiance fields with a single stylized 2D view as a reference. We propose a ray registration process based on the stylized reference view to obtain pseudo-ray supervision in novel views. Then we exploit semantic correspondences in content images to fill occluded regions with perceptually similar styles, resulting in non-photorealistic and continuous novel view sequences. Our experimental results demonstrate that Ref-NPR outperforms existing scene and video stylization methods regarding visual quality and semantic correspondence. The code and data are publicly available on the project page at https://ref-npr.github.io.

Submitted: Dec 6, 2022