Paper ID: 2212.02911
Modern French Poetry Generation with RoBERTa and GPT-2
Mika Hämäläinen, Khalid Alnajjar, Thierry Poibeau
We present a novel neural model for modern poetry generation in French. The model consists of two pretrained neural models that are fine-tuned for the poem generation task. The encoder of the model is a RoBERTa based one while the decoder is based on GPT-2. This way the model can benefit from the superior natural language understanding performance of RoBERTa and the good natural language generation performance of GPT-2. Our evaluation shows that the model can create French poetry successfully. On a 5 point scale, the lowest score of 3.57 was given by human judges to typicality and emotionality of the output poetry while the best score of 3.79 was given to understandability.
Submitted: Dec 6, 2022