Paper ID: 2212.03338
Framework-agnostic Semantically-aware Global Reasoning for Segmentation
Mir Rayat Imtiaz Hossain, Leonid Sigal, James J. Little
Recent advances in pixel-level tasks (e.g. segmentation) illustrate the benefit of of long-range interactions between aggregated region-based representations that can enhance local features. However, such aggregated representations, often in the form of attention, fail to model the underlying semantics of the scene (e.g. individual objects and, by extension, their interactions). In this work, we address the issue by proposing a component that learns to project image features into latent representations and reason between them using a transformer encoder to generate contextualized and scene-consistent representations which are fused with original image features. Our design encourages the latent regions to represent semantic concepts by ensuring that the activated regions are spatially disjoint and the union of such regions corresponds to a connected object segment. The proposed semantic global reasoning (SGR) component is end-to-end trainable and can be easily added to a wide variety of backbones (CNN or transformer-based) and segmentation heads (per-pixel or mask classification) to consistently improve the segmentation results on different datasets. In addition, our latent tokens are semantically interpretable and diverse and provide a rich set of features that can be transferred to downstream tasks like object detection and segmentation, with improved performance. Furthermore, we also proposed metrics to quantify the semantics of latent tokens at both class \& instance level.
Submitted: Dec 6, 2022