Paper ID: 2212.03456
Dock2D: Synthetic data for the molecular recognition problem
Siddharth Bhadra-Lobo, Georgy Derevyanko, Guillaume Lamoureux
Predicting the physical interaction of proteins is a cornerstone problem in computational biology. New classes of learning-based algorithms are actively being developed, and are typically trained end-to-end on protein complex structures extracted from the Protein Data Bank. These training datasets tend to be large and difficult to use for prototyping and, unlike image or natural language datasets, they are not easily interpretable by non-experts. We present Dock2D-IP and Dock2D-IF, two "toy" datasets that can be used to select algorithms predicting protein-protein interactions$\unicode{x2014}$or any other type of molecular interactions. Using two-dimensional shapes as input, each example from Dock2D-IP ("interaction pose") describes the interaction pose of two shapes known to interact and each example from Dock2D-IF ("interaction fact") describes whether two shapes form a stable complex or not. We propose a number of baseline solutions to the problem and show that the same underlying energy function can be learned either by solving the interaction pose task (formulated as an energy-minimization "docking" problem) or the fact-of-interaction task (formulated as a binding free energy estimation problem).
Submitted: Dec 7, 2022