Paper ID: 2212.06138
CLIP Itself is a Strong Fine-tuner: Achieving 85.7% and 88.0% Top-1 Accuracy with ViT-B and ViT-L on ImageNet
Xiaoyi Dong, Jianmin Bao, Ting Zhang, Dongdong Chen, Shuyang Gu, Weiming Zhang, Lu Yuan, Dong Chen, Fang Wen, Nenghai Yu
Recent studies have shown that CLIP has achieved remarkable success in performing zero-shot inference while its fine-tuning performance is not satisfactory. In this paper, we identify that fine-tuning performance is significantly impacted by hyper-parameter choices. We examine various key hyper-parameters and empirically evaluate their impact in fine-tuning CLIP for classification tasks through a comprehensive study. We find that the fine-tuning performance of CLIP is substantially underestimated. Equipped with hyper-parameter refinement, we demonstrate CLIP itself is better or at least competitive in fine-tuning compared with large-scale supervised pre-training approaches or latest works that use CLIP as prediction targets in Masked Image Modeling. Specifically, CLIP ViT-Base/16 and CLIP ViT-Large/14 can achieve 85.7%,88.0% finetuning Top-1 accuracy on the ImageNet-1K dataset . These observations challenge the conventional conclusion that CLIP is not suitable for fine-tuning, and motivate us to rethink recently proposed improvements based on CLIP. We will release our code publicly at \url{https://github.com/LightDXY/FT-CLIP}.
Submitted: Dec 12, 2022