Paper ID: 2212.06313
Metaheuristic-based Energy-aware Image Compression for Mobile App Development
Seyed Jalaleddin Mousavirad, Luís A Alexandre
The JPEG standard is widely used in different image processing applications. One of the main components of the JPEG standard is the quantisation table (QT) since it plays a vital role in the image properties such as image quality and file size. In recent years, several efforts based on population-based metaheuristic (PBMH) algorithms have been performed to find the proper QT(s) for a specific image, although they do not take into consideration the user opinion in advance. Take an android developer as an example, who prefers a small-size image, while the optimisation process results in a high-quality image, leading to a huge file size. Another pitfall of the current works is a lack of comprehensive coverage, meaning that the QT(s) can not provide all possible combinations of file size and quality. Therefore, this paper aims to propose three distinct contributions. First, to include the user opinion in the compression process, the file size of the output image can be controlled by a user in advance. To this end, we propose a novel objective function for population-based JPEG image compression. Second, to tackle the lack of comprehensive coverage, we suggest a novel representation. Our proposed representation can not only provide more comprehensive coverage but also find the proper value for the quality factor for a specific image without any background knowledge. Both changes in representation and objective function are independent of the search strategies and can be used with any type of population-based metaheuristic (PBMH) algorithm. Therefore, as the third contribution, we also provide a comprehensive benchmark on 22 state-of-the-art and recently-introduced PBMH algorithms. Our extensive experiments on different benchmark images and in terms of different criteria show that our novel formulation for JPEG image compression can work effectively.
Submitted: Dec 13, 2022