Paper ID: 2212.08966
Graph Learning and Its Advancements on Large Language Models: A Holistic Survey
Shaopeng Wei, Jun Wang, Yu Zhao, Xingyan Chen, Qing Li, Fuzhen Zhuang, Ji Liu, Fuji Ren, Gang Kou
Graph learning is a prevalent domain that endeavors to learn the intricate relationships among nodes and the topological structure of graphs. Over the years, graph learning has transcended from graph theory to graph data mining. With the advent of representation learning, it has attained remarkable performance in diverse scenarios. Owing to its extensive application prospects, graph learning attracts copious attention. While some researchers have accomplished impressive surveys on graph learning, they failed to connect related objectives, methods, and applications in a more coherent way. As a result, they did not encompass current ample scenarios and challenging problems due to the rapid expansion of graph learning. Particularly, large language models have recently had a disruptive effect on human life, but they also show relative weakness in structured scenarios. The question of how to make these models more powerful with graph learning remains open. Our survey focuses on the most recent advancements in integrating graph learning with pre-trained language models, specifically emphasizing their application within the domain of large language models. Different from previous surveys on graph learning, we provide a holistic review that analyzes current works from the perspective of graph structure, and discusses the latest applications, trends, and challenges in graph learning. Specifically, we commence by proposing a taxonomy and then summarize the methods employed in graph learning. We then provide a detailed elucidation of mainstream applications. Finally, we propose future directions.
Submitted: Dec 17, 2022