Paper ID: 2212.09844
Robust Design and Evaluation of Predictive Algorithms under Unobserved Confounding
Ashesh Rambachan, Amanda Coston, Edward Kennedy
Predictive algorithms inform consequential decisions in settings where the outcome is selectively observed given choices made by human decision makers. We propose a unified framework for the robust design and evaluation of predictive algorithms in selectively observed data. We impose general assumptions on how much the outcome may vary on average between unselected and selected units conditional on observed covariates and identified nuisance parameters, formalizing popular empirical strategies for imputing missing data such as proxy outcomes and instrumental variables. We develop debiased machine learning estimators for the bounds on a large class of predictive performance estimands, such as the conditional likelihood of the outcome, a predictive algorithm's mean square error, true/false positive rate, and many others, under these assumptions. In an administrative dataset from a large Australian financial institution, we illustrate how varying assumptions on unobserved confounding leads to meaningful changes in default risk predictions and evaluations of credit scores across sensitive groups.
Submitted: Dec 19, 2022