Paper ID: 2212.10869

5G Long-Term and Large-Scale Mobile Traffic Forecasting

Ufuk Uyan, M. Tugberk Isyapar, Mahiye Uluyagmur Ozturk

It is crucial for the service provider to comprehend and forecast mobile traffic in large-scale cellular networks in order to govern and manage mechanisms for base station placement, load balancing, and network planning. The purpose of this article is to extract and simulate traffic patterns from more than 14,000 cells that have been installed in different metropolitan areas. To do this, we create, implement, and assess a method in which cells are first categorized by their point of interest and then clustered based on the temporal distribution of cells in each region. The proposed model has been tested using real-world 5G mobile traffic datasets collected over 31 weeks in various cities. We found that our proposed model performed well in predicting mobile traffic patterns up to 2 weeks in advance. Our model outperformed the base model in most areas of interest and generally achieved up to 15\% less prediction error compared to the na\"ive approach. This indicates that our approach is effective in predicting mobile traffic patterns in large-scale cellular networks.

Submitted: Dec 21, 2022