Paper ID: 2212.11484
SALVE: Self-supervised Adaptive Low-light Video Enhancement
Zohreh Azizi, C. -C. Jay Kuo
A self-supervised adaptive low-light video enhancement method, called SALVE, is proposed in this work. SALVE first enhances a few key frames of an input low-light video using a retinex-based low-light image enhancement technique. For each keyframe, it learns a mapping from low-light image patches to enhanced ones via ridge regression. These mappings are then used to enhance the remaining frames in the low-light video. The combination of traditional retinex-based image enhancement and learning-based ridge regression leads to a robust, adaptive and computationally inexpensive solution to enhance low-light videos. Our extensive experiments along with a user study show that 87% of participants prefer SALVE over prior work.
Submitted: Dec 22, 2022