Paper ID: 2212.12454
Generalizable Natural Language Processing Framework for Migraine Reporting from Social Media
Yuting Guo, Swati Rajwal, Sahithi Lakamana, Chia-Chun Chiang, Paul C. Menell, Adnan H. Shahid, Yi-Chieh Chen, Nikita Chhabra, Wan-Ju Chao, Chieh-Ju Chao, Todd J. Schwedt, Imon Banerjee, Abeed Sarker
Migraine is a high-prevalence and disabling neurological disorder. However, information migraine management in real-world settings could be limited to traditional health information sources. In this paper, we (i) verify that there is substantial migraine-related chatter available on social media (Twitter and Reddit), self-reported by migraine sufferers; (ii) develop a platform-independent text classification system for automatically detecting self-reported migraine-related posts, and (iii) conduct analyses of the self-reported posts to assess the utility of social media for studying this problem. We manually annotated 5750 Twitter posts and 302 Reddit posts. Our system achieved an F1 score of 0.90 on Twitter and 0.93 on Reddit. Analysis of information posted by our 'migraine cohort' revealed the presence of a plethora of relevant information about migraine therapies and patient sentiments associated with them. Our study forms the foundation for conducting an in-depth analysis of migraine-related information using social media data.
Submitted: Dec 23, 2022