Paper ID: 2301.00752
Point Cloud-based Proactive Link Quality Prediction for Millimeter-wave Communications
Shoki Ohta, Takayuki Nishio, Riichi Kudo, Kahoko Takahashi, Hisashi Nagata
This study demonstrates the feasibility of point cloud-based proactive link quality prediction for millimeter-wave (mmWave) communications. Previous studies have proposed machine learning-based methods to predict received signal strength for future time periods using time series of depth images to mitigate the line-of-sight (LOS) path blockage by pedestrians in mmWave communication. However, these image-based methods have limited applicability due to privacy concerns as camera images may contain sensitive information. This study proposes a point cloud-based method for mmWave link quality prediction and demonstrates its feasibility through experiments. Point clouds represent three-dimensional (3D) spaces as a set of points and are sparser and less likely to contain sensitive information than camera images. Additionally, point clouds provide 3D position and motion information, which is necessary for understanding the radio propagation environment involving pedestrians. This study designs the mmWave link quality prediction method and conducts realistic indoor experiments, where the link quality fluctuates significantly due to human blockage, using commercially available IEEE 802.11ad-based 60 GHz wireless LAN devices and Kinect v2 RGB-D camera and Velodyne VLP-16 light detection and ranging (LiDAR) for point cloud acquisition. The experimental results showed that our proposed method can predict future large attenuation of mmWave received signal strength and throughput induced by the LOS path blockage by pedestrians with comparable or superior accuracy to image-based prediction methods. Hence, our point cloud-based method can serve as a viable alternative to image-based methods.
Submitted: Jan 2, 2023