Paper ID: 2301.02220
Value Enhancement of Reinforcement Learning via Efficient and Robust Trust Region Optimization
Chengchun Shi, Zhengling Qi, Jianing Wang, Fan Zhou
Reinforcement learning (RL) is a powerful machine learning technique that enables an intelligent agent to learn an optimal policy that maximizes the cumulative rewards in sequential decision making. Most of methods in the existing literature are developed in \textit{online} settings where the data are easy to collect or simulate. Motivated by high stake domains such as mobile health studies with limited and pre-collected data, in this paper, we study \textit{offline} reinforcement learning methods. To efficiently use these datasets for policy optimization, we propose a novel value enhancement method to improve the performance of a given initial policy computed by existing state-of-the-art RL algorithms. Specifically, when the initial policy is not consistent, our method will output a policy whose value is no worse and often better than that of the initial policy. When the initial policy is consistent, under some mild conditions, our method will yield a policy whose value converges to the optimal one at a faster rate than the initial policy, achieving the desired ``value enhancement" property. The proposed method is generally applicable to any parametrized policy that belongs to certain pre-specified function class (e.g., deep neural networks). Extensive numerical studies are conducted to demonstrate the superior performance of our method.
Submitted: Jan 5, 2023