Paper ID: 2301.04794
LiteLSTM Architecture Based on Weights Sharing for Recurrent Neural Networks
Nelly Elsayed, Zag ElSayed, Anthony S. Maida
Long short-term memory (LSTM) is one of the robust recurrent neural network architectures for learning sequential data. However, it requires considerable computational power to learn and implement both software and hardware aspects. This paper proposed a novel LiteLSTM architecture based on reducing the LSTM computation components via the weights sharing concept to reduce the overall architecture computation cost and maintain the architecture performance. The proposed LiteLSTM can be significant for processing large data where time-consuming is crucial while hardware resources are limited, such as the security of IoT devices and medical data processing. The proposed model was evaluated and tested empirically on three different datasets from the computer vision, cybersecurity, speech emotion recognition domains. The proposed LiteLSTM has comparable accuracy to the other state-of-the-art recurrent architecture while using a smaller computation budget.
Submitted: Jan 12, 2023