Paper ID: 2301.05875

Diatom-inspired architected materials using language-based deep learning: Perception, transformation and manufacturing

Markus J. Buehler

Learning from nature has been a quest of humanity for millennia. While this has taken the form of humans assessing natural designs such as bones, butterfly wings, or spider webs, we can now achieve generating designs using advanced computational algorithms. In this paper we report novel biologically inspired designs of diatom structures, enabled using transformer neural networks, using natural language models to learn, process and transfer insights across manifestations. We illustrate a series of novel diatom-based designs and also report a manufactured specimen, created using additive manufacturing. The method applied here could be expanded to focus on other biological design cues, implement a systematic optimization to meet certain design targets, and include a hybrid set of material design sets.

Submitted: Jan 14, 2023