Paper ID: 2301.06650
Enhancing Deep Traffic Forecasting Models with Dynamic Regression
Vincent Zhihao Zheng, Seongjin Choi, Lijun Sun
Deep learning models for traffic forecasting often assume the residual is independent and isotropic across time and space. This assumption simplifies loss functions such as mean absolute error, but real-world residual processes often exhibit significant autocorrelation and structured spatiotemporal correlation. This paper introduces a dynamic regression (DR) framework to enhance existing spatiotemporal traffic forecasting models by incorporating structured learning for the residual process. We assume the residual of the base model (i.e., a well-developed traffic forecasting model) follows a matrix-variate seasonal autoregressive (AR) model, which is seamlessly integrated into the training process through the redesign of the loss function. Importantly, the parameters of the DR framework are jointly optimized alongside the base model. We evaluate the effectiveness of the proposed framework on state-of-the-art (SOTA) deep traffic forecasting models using both speed and flow datasets, demonstrating improved performance and providing interpretable AR coefficients and spatiotemporal covariance matrices.
Submitted: Jan 17, 2023