Paper ID: 2301.06907
Deep Conditional Measure Quantization
Gabriel Turinici
Quantization of a probability measure means representing it with a finite set of Dirac masses that approximates the input distribution well enough (in some metric space of probability measures). Various methods exists to do so, but the situation of quantizing a conditional law has been less explored. We propose a method, called DCMQ, involving a Huber-energy kernel-based approach coupled with a deep neural network architecture. The method is tested on several examples and obtains promising results.
Submitted: Jan 17, 2023