Paper ID: 2301.08509
Generative Logic with Time: Beyond Logical Consistency and Statistical Possibility
Hiroyuki Kido
This paper gives a simple theory of inference to logically reason symbolic knowledge fully from data over time. We take a Bayesian approach to model how data causes symbolic knowledge. Probabilistic reasoning with symbolic knowledge is modelled as a process of going the causality forwards and backwards. The forward and backward processes correspond to an interpretation and inverse interpretation of formal logic, respectively. The theory is applied to a localisation problem to show a robot with broken or noisy sensors can efficiently solve the problem in a fully data-driven fashion.
Submitted: Jan 20, 2023